Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
Pest infestation causes significant crop damage during crop production, which reduces the crop yield in terms of quality and quantity. Accurate, precise, and timely information on pest infestation is a crucial aspect of integrated pest management practices. The current manual scouting methods are time-consuming and laborious, particularly for large fields. Therefore, a fleet of scouting vehicles is proposed to monitor and collect crop information at the sub-canopy level. These vehicles would traverse large fields and collect real-time information on pest type, concentration, and infestation level. In addition to this, the developed vehicle platform would assist in collecting information on soil moisture, nutrient deficiency, and disease severity during crop growth stages. This study established a proof-of-concept of a crop scouting vehicle that can navigate through the row crops. A reconfigurable ground vehicle (RGV) was designed and fabricated. The developed prototype was tested in the laboratory and an actual field environment. Moreover, the concept of corn row detection was established by utilizing an array of low-cost ultrasonic sensors. The RGV was successful in navigating through the corn field. The RGV’s reconfigurable characteristic provides the ability to move anywhere in the field without damaging the crops. This research shows the promise of using reconfigurable robots for row crop navigation for crop scouting and monitoring which could be modular and scalable, and can be mass-produced in quick time. A fleet of these RGVs would empower the farmers to make meaningful and timely decisions for their cropping system....
The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel slag on soil bacterial biomass and plant mineral uptake were analyzed in this study. The soil pH increased in proportion to the amount of steel slag added. A lower concentration (0.2% to 1%) of steel slag addition did not change the bacterial biomass. However, a higher concentration of steel slag (above 1%) had a negative effect on bacterial biomass. A lower amount of steel slag (0.2% to 1%) addition in soil leads to increased mineral (Ca, Mg, and Fe) uptake and plant growth in Brassica rapa var. periviridis and Spinacia oleracea L. However, mineral uptake by the plants decreased when a large amount of steel slag (above 1%) was added to the soil. Low concentrations of steel slag (0.2% to 1%) in soil had positive effects on plant growth, mineral uptake of plants, and bacterial biomass....
Different studies have shown that global warming and climate change have increased the planet’s temperature in different locations. For the apple-growing farmers, this may have a negative impact on the accumulations of chill units when the air temperature during the fall-winter season increases. When the entire trees are covered with a reflective material, the wood temperature may decrease. Therefore, the objective of this study was to evaluate the effect of whitening (with calcium hydroxide) the entire apple trees (Malus domestica Borkh) after defoliation, on the branches and trunks’ internal temperature (under the bark), the accumulation of chill units (CU), its effects on fruit yield and quality and the relation with the use of thidiazuron (TDZ) (inducer of budbreak). The study was conducted during the fall-winter seasons of 2019-2020 and 2020-2021. The results of this study showed that at the hours of the highest incidence of solar radiation, the internal temperature of the whitened trunks and leaves decreases up to 9˚C and 6˚C respectively. The accumulated CU during the time of the study, of the whitened branches were up to 81% higher than the ones recorded on the branches with no whitening; while the CU was lost at the hours of highest solar radiation (due to a high temperature) were up to 37.2% smaller. Entire tree whitening increased up to 26% of the yield per tree compared to the application of TDZ. No statistical difference in fruit quality was observed between whitened trees and those with no whitening but with the application of thidiazuron....
Orchard plant protection machinery in China still has a low application efficiency. Air-blast sprayers represent the primary development direction of pesticide applications in orchards. The spray control parameters have to be matched to the tree canopy status to achieve precise results. In this study, a vertical patternator was used to determine the accuracy of spraying fruit trees. The influences of three control parameters (blower speed, spray angle, and spray distance) on the spray performance of the air-blast sprayer were analyzed, and the volume of the spray was measured in collection plates at different heights. The quantitative relationship between the overall collection volume and the critical height collection volume was obtained for different parameter values, and the combined effects of any two control parameters on the collection performance and the position of the optimum collection area were obtained. The regression model describing the relationship between the collection volume in the critical height range and the three factors was established, and the main effects of the control parameters were determined. The results showed that if one parameter remained constant, the correlation between the other two parameters was non-significant. The collection volume in the critical height range increased initially and then decreased as the spray distance increased. The maximum collection volume was obtained at a spray distance of 1.762 m. The regression model can be used to obtain the optimum values of the parameters....
On-the-go soil sensors measuring apparent electrical conductivity (ECa) in agricultural fields have provided valuable information to producers, consultants, and researchers on understanding soil spatial patterns and their relationship with crop components. Nevertheless, more information is needed in Mississippi, USA, on the longevity of ECa measurements collected with an on-the-go soil sensor system. That information will be valuable to users interesting in employing the technology to assist them with management decisions. This study compared the spatial patterns of ECa data collected at two different periods to determine the temporal stability of map products derived from the data. The study focused on data collected in 2016 and 2021 from a field plot consisting of clay and loam soils. Apparent electrical conductivity shallow (0 - 30 cm) and deep (0 - 90 cm) measurements were obtained with a mobile system. Descriptive statistics, Pearson correlation analysis, paired t-test, and cluster analysis (k-means) were used to compare the data sets. Similar trends were evident in both datasets; apparent electrical conductivity deep measurements were greater (P < 0.05) than the ECa shallow measurements; a strong positive correlation (P < 0.05, r > 0.90) existed between the ECa shallow and deep measurements. Also, a high correlation (r ≥ 0.79) was observed between the ECa measurements and the y-coordinates recorded by a global positioning system, indicating a spatial trend in the north and south direction (vice versa ) of the plot. Comparable spatial patterns were observed between the years in the ECa shallow and deep thematic maps developed via clustering. Apparent electrical conductivity data measurement patterns were consistent over the five years of this study. Thus the user has at least a five-year window from the first data collection to the next data collection to determine the relationship of the ECa data to other agronomic variables....
Loading....